Institute of Pharmacology and Toxicology


We employ systems-focused approaches to decipher the complex Photo Zimmermann cellular processes underlying heart failure development with the aim of defining novel therapeutic strategies. Inputs from developmental biology and aging processes are exploited to identify novel drug targets in cardiomyocytes, non-myocytes, and the extracellular stroma to protect and regenerate the heart. A key challenge is to define primary and secondary processes in heart failure pathology for optimal design of therapeutic strategies.

The majority of patients with heart failure present severe structural and functional cardiac impairments with limited responsiveness to classical pharmacological treatment. These patients may benefit from reconstruction of functional myocardium using stem cell-based tissue engineering. The Institute of Pharmacology employs state-of-the-art concepts from pharmacology and biomedical engineering to establish proof-of-concept and translate individualized tissue engineered heart repair.

Tissue engineering enables us to build three-dimensional culture systems with organotypic structure and function. Additional development of different organ surrogates to simulate disease processes and develop novel therapeutics for organ protection and regeneration is ongoing at the Institute of Pharmacology. The availability of stem cells from individual patients creates the opportunity to devise novel pharmacological, gene-based, and cell-based approaches for individualized treatments in patients with heart failure, skeletal muscle disease, and neurological disorders.

In addition to our activities in research and education of students in medicine and natural sciences we offer professional consultant services pertaining to drug therapy.

Prof. Dr. med. Wolfram-Hubertus Zimmermann
Director, Institute of Pharmacology and Toxicology